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Abstract A hybrid computational method has been developed for the calculation of momentum
and heat transfer in turbulent boundary layer flows along flat plates. The proposed method, the
finite volume-based method of lines, replaces a partial differential equation and two independent
variables by a system of ordinary differential equations of first order and one independent
variable. Using the simplest assumptions for modeling the turbulent diffusivity of momentum and
heat, the system of differential equations may be readily integrated with a fourth-order Runge-
Kutta algorithm. To validate the numerical predictions, comparisons with experimental data for
air have been done in terms of axial velocities, temperatures, skin friction coefficients and
Stanton numbers. For the wide range of Reynolds numbers tested, the hydrodynamic and thermal
characteristics of turbulent air flows are predicted correctly.

Nomenclature
A+ = van Driest constant
C = specific heat capacity
Cf = local skin friction coefficient
K = constant, equation (11)
l = mixing length
Pr = Prandtl number
Prt = turbulent Prandtl number
qw = wall heat flux
Rex = local Reynolds number
Re� = momentum thickness Reynolds

number
St = Stanton number
S� = source term, equation (8)
t = temperature
tw = wall temperature
t1 = free stream temperature
t+ = non-dimensional temperature,

�twÿt���w=��1=2

qw=�C

u = axial velocity component
u+ = non-dimensional axial velocity, u/u�
u� = shear velocity, ��w=��1=2

u1 = free stream velocity
v = transversal velocity component
x = axial coordinate

y = transversal coordinate
y+ = non-dimensional transversal

coordinate, y u �
�

Greek letters
� = molecular thermal diffusivity
ÿeff = effective diffusion coefficient,

equation (8)
�y = transversal interval
� = thickness of the boundary layer
"H = eddy diffusivity for heat
"M = eddy diffusivity for momentum
� = kinematic viscosity
� = density
�w = wall shear stress
� = generalized transport variable,

equation (8)

Subscripts
i = inner
n = north line
o = outer
p = line
s = south line

The current issue and full text archive of this journal is available at
http://www.emerald-library.com/ft
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Introduction
The art of predicting the hydrodynamic and thermal turbulent boundary layers
in external flows has advanced very rapidly with the development of
sophisticated finite-difference procedures and the advent of large-scale digital
computers. The complexity inherent in the calculation of boundary layers has
motivated researchers to improve existing numerical procedures until accurate
numerical predictions of the experimental data, coupled with small computing
costs could be met. Typical studies can be found in Pletcher (1969), Patankar
and Spalding (1970), Cebeci et al. (1970), Dyban and Fridman (1987), Zincheno
and Fedorova (1987), Shishov (1991), Susec and Oljaca (1995), Hori and Yata
(1997), Volino and Simon (1997) and Silva Freire (1999). In these works, quite
satisfactory numerical results have been obtained for both skin friction and
heat transfer coefficients in turbulent boundary layers of incompressible fluids.
Standard finite-difference techniques demand that the streamwise and
transversal intervals of the governing conservation equations must be chosen
sufficiently small to force the numerical solution to converge closely to the
exact solution.

From a conceptual point of view, the lack of a complete statistical theory for
the turbulent transport of mass, momentum and energy has been the main
obstacle for the exact determination of time-mean velocity and time-mean
temperature fields (Schlichting, 1979). Therefore, the solutions of the
conservation equations of the turbulent boundary layers depend on some
empiricism based on experimental data. Consequently, this situation has led to
the adoption of various approaches and methodologies that provide a wide
spectrum of accuracy in predicting the relevant boundary layer parameters.

The general objective of this investigation was to develop a simple and
reliable computational procedure of explicit type for the calculation of the
hydrodynamic and thermal boundary layers along flat plates. Based on its
flexible characteristics, the procedure is intended to be suitable for both
research and educational purposes in engineering. The path followed here is
briefly outlined below:

(1) A numerical methodology involving the method of lines (MOL)
(Liskovets, 1965) has been implemented and modified for the treatment
of the conservation equations of mass, momentum and energy. A
variant of the method, the finite volume method of lines (FVMOL) is
introduced wherein the discretization of the transversal derivatives in
the conservation equations was performed with finite volumes
(Tannehill et al., 1997). The finite volumes have to be constructed in a
special way such that their sizes have infinitesimal length and finite
height. Accordingly, the original set of conservation equations is
reformulated by a system of ordinary differential equations of first order
where the streamwise coordinate retaining a continuous behavior is the
independent variable. In turn, the resulting initial value problem (IVP)
may be readily integrated numerically with a fourth-order Runge-Kutta
algorithm.
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(2) In the above formulation, the hydrodynamic boundary layer is
envisioned as a composite layer having two regions: an inner and an
outer region. The most simple continuous model for the eddy diffusivity
of momentum was utilized, i.e. the mixing length model. Additionally,
the eddy diffusivity of heat was expressed in terms of a turbulent
Prandtl number, which was assumed to be constant.

(3) The experimental data most heavily relied on were expressed in terms of
global quantities, such as the skin friction coefficient and the Stanton
number for air flows characterized by Reynolds numbers ranging from
105 to 107. In addition, comparisons were also made with experimental
measurements of local quantities: the non-dimensional axial velocity u
and the non-dimensional temperature t.

FVMOL may handle equally well turbulent flows exposed to large temperature
differences. The properties appearing in the equations of conservation have to
be taken as variables, so that the equations are highly coupled. Needless to say,
more refined models for the eddy diffusivity of momentum and the eddy
diffusivity of heat may be incorporated into the conservation equations too,
without causing additional difficulties.

Descriptive equations
Under the assumption of constant properties, the time-averaged conservation
equations of mass, momentum and energy for a turbulent boundary layer flow
along a flat plate are:

Mass:

@u

@x
� @v

@y
� 0; �1�

Momentum:

u
@u

@x
� v

@u

@y
� @

@y
�� � "M� @u

@y

� �
; �2�

Energy:

u
@t

@x
� v

@t

@y
� @

@y
��� "H� @t

@y

� �
: �3�

The incoming fluid has a uniform free-stream velocity u1 and a uniform free-
stream temperature t1, while the plate is maintained at a uniform temperature, tw.

Zero-equation model
For the closure of the turbulence, the simplest algebraic turbulence model is the
mixing length model of Prandtl (Schlichting, 1979). Accordingly, the eddy
diffusivity for momentum "M is:
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"M � l2
@u

@y

���� ����; �4�

where l denotes the `̀ mixing length''. To account for the inner region, the
variable `̀ mixing length'' is evaluated with:

li � � y 1ÿ exp ÿ y�

A�

� �� �
; �5�

where y+ = (yu� /�) is the wall coordinate, � = 0.4 is the von KaÂrmaÂn constant
and A+ = 25 is the damping constant (van Driest, 1956). The outer region is
modeled by a constant `̀ mixing length'':

l0 � C �; �6�
where C = 0.089 and � is the hydrodynamic boundary layer thickness. This
relation was derived by Maise and McDonald (1968) and agrees well with the
experimental data. Consequently, equation (5) applies from the wall up to a
certain location wherein li = lo, and beyond this merging point equation (6) is
utilized.

At this point, it is worth mentioning that the computational methodology to
be described in the next section has no intrinsic limitations that would prevent
the utilization of more refined algebraic turbulence models.

The turbulent diffusivity for heat "H may be expressed by:

"H � "M

Prt
; �7�

where the turbulent Prandtl number Prt for air takes as a constant value equal
to 0.85 (Kays, 1994). Again, it is appropriate to reiterate that more elaborate
models for Prt may be incorporated in the analysis. However, as mentioned
before, the primary aim of this paper was to resort to the simplest models.

Computational methodology
It is important to recognize that although turbulence models may be carefully
formulated, sometimes predictions cannot be improved beyond a certain level
because of the inherent limitations of the finite-difference method adopted.
Various schemes have been extensively used in computational fluid dynamics
because of their simplicity and good stability characteristics when applied to
external turbulent flows (Tannehill et al., 1997). Obviously, the merits of a
higher-order closure turbulence model can be easily lost in the computational
process.

Background
In general, two-dimensional boundary layer flows require the solution of a
system of three partial differential equations. Each equation in the system may
be accommodated into a generalized convection-diffusion transport equation:
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where � represents a generic transport variable, ÿeff is the effective diffusion
coefficient and S� is the source term, respectively (see Table I).

Any standard finite-difference method approximates equation (8) at any
interior point i,j of the computational domain by an algebraic equation
accounting for a five-point molecule. Thus, having such an algebraic equation
for each interior point, the main task is to solve a system of algebraic equations
for the unknown quantities �.

The new proposed method: FVMOL
From a mathematical perspective, the MOL is essentially a hybrid technique
for replacing a partial differential equation in two independent variables by an
appropriate system of ordinary differential equations in one variable
(Liskovets, 1965). If the partial differential equation is parabolic, having
independent variables x (axial variable) and y (transversal variable), as in
equation (8), then the region of integration may be divided into lines parallel to
the x-coordinate by lines y = constant. Thus, the partial derivatives of � with
respect to y at each line are replaced by standard finite-difference formulations
using values of the dependent variables at a particular line and at the upper
and lower adjacent lines. This systematic procedure gives rise to a system of
ordinary differential equations of first order, where the dependent variable �
along each line depends solely on the continuous independent variable, x.

Instead of standard finite-difference formulations, the discretization
procedure in this work relies on finite volumes (Tannehill et al., 1997). This
combination generates a hybrid method called the FVMOL, wherein the finite
volume shown in Figure 1 has infinitesimal length in the axial direction and
finite height in the transverse direction. Actually, this study represents another
step in the development of simple computational methodologies for partial
differential equations involving discretizations by finite volumes.

The region of integration is divided into an array of lines parallel to the wall
as illustrated in Figure 2. Correspondingly, equation (8) may be integrated in
the y-direction between the appropriate limits of integration s and n. This
integration gives the following equation:

Table I.
Variables in
equation (8)

Conservation equations � ÿeff S�

Mass l 0 0
Momentum u � � "M 0
Energy t �� "H 0
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which is `̀ exact'' in the sense that no additional hypothesis has been invoked so
far. Next, assuming that the field variables u, v, �, as well as S� may be
considered nearly constant between the boundaries s and n of the finite volume,
equation (9) is converted into the ordinary differential equation of first order:

d

dx
�up�p� � 1

�y
ÿeff

@�

@y
ÿ v�

� �n

s

�S� p: �10�

Thus, from a mathematical point of view, equation (10) governs the continuous
variation of each field variable in the x direction at any fixed distance, y = yp,
measured from the wall.

The diffusive term appearing at the upper and lower faces of the finite
volume is taken into account by utilizing an appropriate logarithmic law for the
variation of each field variable between neighboring lines. To do so, a
logarithmic law has been adopted because both the axial velocity and the

Figure 1.
One-dimensional finite
volume

Figure 2.
Distribution of lines in
the computational
domain
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temperature profiles usually exhibit smooth and almost linear variation with
the logarithm of the transversal space variable y.

Non-uniform transversal intervals
Adoption of a non-uniform grid in the y-direction may be beneficial because it
reduces the number of lines in the computational domain, and consequently
reduces the number of ordinary differential equations of first order that
participate in the system. This particular grid produces smaller intervals close
to the wall and larger intervals near the edge of the boundary layer. As a result,
the grid accommodates larger axial velocity and temperature gradients in the
vicinity of the wall. Correspondingly, the deployment of lines responds to the
relation:

ln
yu

yd
� K; �11�

which has the property that the logarithm of the ratio of distances from the wall
to any two adjacent lines is a constant value K (see Figure 3). Moreover, it is
also assumed that the common boundary, c, between two consecutive lines, u
and d, lies at a distance y from the wall, satisfying the relation:

ln �yc=yd�
ln �yu=yd� �

1

2
: �12�

Also, it may be assumed that there exists a logarithmic profile for any field
variable � (axial velocity u and temperature t) between two consecutive lines, u
and d, of the form:

� � a ln �by�: �13�
As a consequence of these steps, the diffusivity flux of � across the boundary c
becomes:

Figure 3.
Variable

transversal grid
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once the constants a and b have been computed.

Transformation of the descriptive equations
Equation (10), with information from Table I, supplies the system of y-discretized
equations that describe the conservation of mass, momentum and energy:

Momentum:

dup

dx
� 1

�y�2up ÿ un� �� � "M� @u

@y

� �n

s

ÿvs�us ÿ un�
� �

; �15�

Mass:

vn � vs ÿ�y
dup

dx
; �16�

Energy:

dtp

dx
� 1

up�y
�m ÿ vt� � n

sÿ
tp

up

dup

dx
; �17�

where:

�M � �
�
� "H

�
� 1

Pr
� "M=�

Prt
; �18�

is an auxiliary function.
The system of equations (15)-(18) describes an IVP where the boundary

conditions at the leading edge of the plate are:

up � u1; tp � t1; x � 0: �19�

Computational procedure
The above system of equations implies that the axial velocity u, the transversal
velocity v and the temperature t may be explicitly calculated inside the
hydrodynamic and thermal boundary layers moving from the wall outwards.
In the vicinity of the wall, the axial velocity has been modeled by postulating
the existence of a Couette flow, which allows for the diffusive momentum
interchange between lines W and P in Figure 4 (Tannehill et al., 1997). As a
result, the finite volume formulation in the transversal direction avoids the
regions of large gradients close to the wall.

Starting with three lines at the leading edge of the plate, the number of lines
that need to be placed inside the turbulent boundary layer may be determined
at each axial step (see Figure 2). As a by-product, the gradually increasing
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number of lines serves to delineate the natural growth of the turbulent
boundary layers such that the condition at the outer edge u/u1 > 0.99. The
system of equations (15)-(19) was numerically integrated with a fourth-order
Runge-Kutta algorithm (IMSL, 1984) on a personal computer. A sensitivity
analysis of the grid produced grid-independent results for 16 unequally spaced
intervals at the trailing edge of the plate and an axial step of 10±4.

Calculated and experimental results
The numerical calculations were performed for turbulent air flows in the range
105 < Rex < 107 and Pr = 0.7.

A typical distribution of wall velocity is plotted on wall coordinates in
Figure 5. Good agreement is observed with the experimental observations of
Anderson et al. (1975) for the various Reynolds number Rex tested at both the

Figure 4.
One-dimensional finite

volume near the wall

Figure 5.
Turbulent velocity

profile
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inner and outer regions of the turbulent boundary layer of air (1 < y+ < 1,000).
Similarly, the predicted velocity profiles are also in agreement with the
logarithmic portion of the law of the wall.

Figure 6 compares the experimental and numerical results for the variation of
the skin friction coefficient Cf (a global quantity) with the momentum thickness
Reynolds number Re�. An overall inspection of part a in the figure reveals that
good agreement prevails between the majority of experimental data points for
air and the numerical results for the interval 4 � 102 < Re� < 104. The same set
of Cf results is plotted in part b of the figure, along with those of Pletcher (1969)
calculated by an explicit finite-difference method. It may be confirmed that both
curves overlap over the Re� interval employed. Furthermore, the monotonic
decreasing curve compares well with the standard correlation equation given by
Schlichting (1979):

Figure 6.
Skin friction coefficient
vs. Reynolds number
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Cf � 0:0256 Re
ÿ1=4
� : �20�

Attention is now directed to the heat transfer between the wall and air (Pr = 0.7).
These results include temperature distributions and local Stanton numbers for
Rex = 1.2� 106. The non-dimensional temperature distribution designated as t+

vs y+ will be discussed first. In Figure 7, it is observed that the numerical
predictions exhibit a good qualitative trend when compared with the
measurements of Blackwell (1972). Moreover, the Stanton number St is plotted
as a function of the Reynolds number Rex in Figure 8. This figure confirms the
expected monotonic decrease of the turbulent convective heat transfer
coefficient of the air flow along the plate. It may be seen that there is no
appreciable deviation between the numerical estimation and the experimental
measurements reported by Reynolds et al. (1958) over the range 2� 105 < Rex <
8 � 106. It is common practice to identify this variation by a simple correlation
equation proposed by Reynolds et al. (1958):

St Pr0:4 � 0:0287 Reÿ0:2
x : �21�

Concluding remarks
This paper presented a numerical simulation of the hydrodynamic and thermal
characteristics of turbulent flows along an isothermal flat plate. The numerical
portion of the work was based on a suitable combination of the FVMOL. On
discretizing the transversal derivatives of the conservations equations of mass,
momentum and energy, a system of first-order ordinary differential equations

Figure 7.
Turbulent temperature

profile
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is readily obtained. This system may be easily solved by a marching technique,
such as the fourth order Runge-Kutta yielding the distributions of axial
velocity, transverse velocity and temperature. Excellent agreement was found
to prevail between the numerical predictions and the experimental data for air
for the global quantities, such as the skin friction coefficients and the Stanton
numbers utilizing three lines at the leading edge and a maximum of 16 lines at
the trailing edge. The excellence of these agreements gives confidence in the
capabilities of the hybrid numerical procedure (FVMOL) to produce results of
high accuracy for the hydrodynamic and thermal developments of boundary
layers of common liquids under turbulent conditions.
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